Development of the ITER CODAC Core Systems

COntrol Data Access & Communications means Control (system and team)

Franck Di Maio, Jean-Yves Journeaux, Wolf-Dieter Klotz, Kirti Mahajan, Petri Makijarvi, Denis Stepanov, Nadine Utzel, Anders Wallander

ITER Organization, 13067 St. Paul lez Durance, France

Introduction

The ITER project has:

- A long schedule
 - Systems construction will start in 2010
 - Operation will start in 2018 (*)
 - Installation and commissioning will continue until 2025 (*) for the DT operation.
- A complex procurement scheme
 - Most of the plant systems are "in kind" procurements
 ITER Organization (IO) ↔ Domestic Agencies (DA) ↔ Plant system suppliers.
 - Plant systems, including their controls, will be built, tested and delivered by many partners distributed among all ITER parties
- A long life cycle for controls.
- But requiring very early standardized solutions supplied and supported by IO.

(*) Schedule not yet approved by the ITER council

The ITER CODAC Architecture

Plant System Host (PSH)

- A CODAC system supplied by the ITER Organization
- That is a part of the plant system controls
- To allow the implementation of some CODAC services on a platform maintained by the CODAC group

10 Plant System Groups or Subsystems (yellow) each consisting of X Plant Systems (gray)

Mini-CODAC

Before integration.

- A CODAC system supplied by the ITER Organization
- Directly connected to the plant system controls
- To implement a reduced set of the CODAC services for the development and tests of the plant system

Plant System Controllers

Technical specifications:

- Any "slow controller" (PLC) shall be a Siemens Simatic S7 PLC
- Any "fast controllers" shall be built with EPICS

CODAC Core Systems

- CODAC core systems designate the hardware platforms and the software components that implement "core" services:
 - Configuration management
 - Communications
 - Human Machine Interface (HMI) building
 - Alarms handling
 - Errors & Trace logging
 - Data archiving
 - Supervision
 - Tests tools
- Core systems will be:
 - based on EPICS,
 - implemented by increments with a new version every year.

Roadmap

2010/Q1	Version 1 Preliminary	Integration of PLCs EPICS distribution with limited additions.
2011/Q1	Version 2 Stable for developments	Extensions for fast controllers Preliminary versions of new tools APIs frozen
2012/Q1	Version 3 Stable for tests	New tools Robustness

- The hardware platforms are Mini-CODAC and PSH (OS: RHEL)
- New tools will be based on Java and Eclipse (and very likely on Control System Studio)

Version 1

- Stable and widely used EPICS tools.
- S7 IOC built with the SLS S7plc driver.

Thanks ANL, SNS, SLS...!

 Configuration tool ("Selfdescription") to manage the PSH/PLC interface and to facilitate usage.

Resources

The model:

- A small, but increasing (!), ITER team.
- Contracts.

For core systems versions 1-3:

- A team with members from the Indian Institute for Plasma Research (IPR) and Tata Consulting Services (TCS).
- Support from Cosylab.

. . .

Also partnership with other labs

- KSTAR (the Korean Tokamak)
- ASIPP (the Institute of Plasma Physics, China)
- RFX (the fusion facility in Padova)

...

(!) Check job positions

Plant System Self-Description

The concept:

- The component shall disclose all the necessary data about its interfaces and internal structure for enabling treatment by external programs.
- All data shall be expressed using XML in conformance with a schema specified at project level.

The objectives:

- Configure in an automatic manner the CODAC core systems from the plant systems' configuration data.
- Treat configuration data as a deliverable.

Conclusion

The direction:

- Epics as the baseline framework
- "Self-description": configuration management with XML schema
- New toolkit based on Java and Eclipse.

The process:

- One step every year
- With many partners from the ITER parties

www.iter.org