



# Upgrade of RF Control system at SPring-8

T. Matsumoto\*, T. Kudo, T. Masuda and R. Tanaka JASRI/SPring-8

15th Oct., 2009, THA004 ICALEPCS2009



### Outline

- RF Control system at SPring-8
- Faced problems
- Replacement of manufacturing discontinued I/O boards
  - Approach and some examples will be shown

### RF system at SP-8 storage ring



- There are 4 RF stations (A, B, C, D) along the ring
- Control klystron, cavities, low-level equipments

## RF control system

- Large numbers of signals to control klystron, cavities, lowlevel system
- Controlled by VME system
- MADOCA control framework

#### #Signals for each RF station

| Туре | #Signals |
|------|----------|
| AI   | ~170     |
| DI   | ~150     |
| DO   | ~60      |
| PTG  | ~30      |
| GPIB | ~170     |

- PTG (Pulse Train Generator) board
  - Used to control analog output voltage for low-level control (tuner control etc.)
- GPIB control
  - Control of RF cavities
    - flow and temperature of cooling water, vacuum

# Faced problems

AI: AVME9325 (Acromag Inc.)

PTG: MP0351 (Micro Craft Inc.)

#### Two problems in the RF control system

- Manufacturing discontinuances in used <u>VME I/O boards</u>
  - VME I/O boards were implemented at the early stage of the construction (more than 10 years ago)
  - Need replacement to maintain the control system for a long time.
- Instabilities in GPIB control system\*
  - For RF cavity, ~ 60 / 170 signals had RS-422 interface and controlled by GPIB with converters.
  - Communication errors occured in this complex part.

Showing how the replacement of I/O boards can be performed in SP-8 RF system

<sup>\*</sup> Solved by introducing small embedded computer (Ref. Backup slide)

## VME I/O boards



The replacement of VME I/O boards was difficult due to:

- Large number of signals,
   IO boards
- Restricted time
  - The replacement should be performed during short shutdown period of acc.
     operation

## Approach to the replacement

#### Introduction of commercial I/O boards

Pros

 We can select convinient boards from the market, with lower cost.

Cons

 Need cost, time to adjust peripheral environment (cabling, software etc.)

#### Development of compatible I/O boards

Pros

Smooth replacement of the I/O boards

Cons

Need cost for the development

- We developed new I/O boards to facilitate the replacement.
- To reduce the cost, we aimed to unify used I/O boards at the same time.

### Development of New I/O boards

#### Same cabling scheme

- A lot of cable are already wired in our VME rack.
- We don't want to touch these as much as possible.

#### Similar functions

 We want to use new boards as same manner in the old one.

#### Improvements, if possible

 New technologies on hand can be utilized for better resolution, higher signal density etc.



# Development of AI board (1)

Developed for replacement of two AI boards

- ♦ AVME9325 (Acromag Inc.)
   → SP-8 RF control
- ♦ VMIVME-3122 (VMIC Inc.)
  → SP-8 beam line control

VME front-side

Compatible to VMIVME-3122

64 (64) ch Differential (single-ended) VME bus-P2 side

Compatible to

16 (32) ch Differential (single-ended)

#### Al (Compatible parts)

- Same signal cabling inputs
- Similar functions
  - Programmable input ranges
  - Data acquisition modes
  - Trigger modes
  - DRAM for data sampling



Developed Al board, Advme2618 (Advanet Inc.)

# Development of AI board (2)

#### Al (Improved parts)

- Higher signal density
  - For AVME9325, signal density was increased by changing input from VME-bus P2 to VME-front side.
    - Conversion card was prepared for this.
  - Number of boards → reduced to ~1/2
- Higher A/D resolution
  - 12 bit → 16 bit

# Replacement of AI boards (1)

- In all, 43 Al boards were successfully replaced
  - Smoothly replaced in summer and winter shut down period last year without problems.
  - Required time is ~ 3 days with 1 person.
  - New Al boards are working fine as expected.
- We also had additional improvements at the same time
  - Better A/D resolution



# Replacement of AI boards (2)

- ◆ For RF station A, #boards reduced : 10 → 6 by increasing signal channel density
  - → Will be applied for other RF stations in near future



New AI boards: analog input from VME front side

## Development of PTG board

- Function of PTG is simple
  - CW/CCW pulses from PTG just increase/decrease the analog voltage
- We chose logic-reconfigurable VME, Ax∨me4900 for New PTG
  - \* Several applications at SPring-8 (PID feedback system, Beam shutter control etc.)

See TUP061

- Selectable daughter boards
  - → Flexible I/O for each purpose
- Logic can be flexibly programmed with FPGA on the board

Can be applied to New PTG



### New PTG design

- We designed DO daughter boards, and buffer amplifiers
  - → Easier hardware development, using existing Axvme4900
- Same cabling scheme can be applied after buffer amplifiers
- Possible for smooth replacement
- Higher channel density
   5 CW/CCW pulses
   for 1 PTG board (Now)
- → 30 CW/CCW pulses (New)
- #PTG/RF station
  can be reduced from
  6 (Now) to 1(New)



### Summary

- The replacement of manufacturing discontinued I/O boards was needed to maintain SP-8 RF control system for long time period.
- The replacement of the boards was not so easy due to:
  - Large number of signals, I/O boards
  - Restricted time during short shutdown period
- To facilitate the replacement, it was effective to develop new boards, having compatibilities.
  - ~40 Al boards were smoothly replaced with new boards.
  - Additional improvements were possible at the same time.
     (Higher signal densities, better A/D resolution)
- It was possible to unify several I/O boards at the same time.
- PTG boards will be replaced in the same manner.



# Replacement of GPIB control system

- Data taking on RF cavities for long time, was impossible due to communication errors on GPIB control.
  - RS-232C control had been done with GPIB-VME boards with conversion boards.
  - Troubled due to bad compatibility between RS-232C-GPIB converter and GPIB-VME.
- For RS-232C, we chose small embedded computer, Armadillo-220.
  - Compact, Running Linux OS, Reliable, Powered by PoE
  - Control system by embedding MADOCA is also possible.
  - Several applications at SPring-8 (Linac modulator PLC control, voice talker system etc.)
- Replaced with Armadillo-220 last year. Stably operated so far.



