ICALEPCS09, 2009/10/15

STABILIZATION OF BEAM EXTRACTION TIMING IN J-PARC RCS

Fumihiko Tamura and Masahito Yoshii (J-PARC)

Overview

- Introduction
 - timing requirements
- Stabilization of beam extraction timing
- Beam test results
- Summary and outlook

Introduction

Fig. 1: The beams from the RCS are delivered to the MLF (materials and life science facility) and MR. Typically 4 pulses to MR, 87 pulses to MLF. 2009/10/15

RCS parameters

Table 1: Parameters of the J-PARC RCS.

circumference	348.333 m
energy	0.181–3 GeV
accelerating frequency	0.938–1.671 MHz
harmonic number	2
repetition	25 Hz
cavity Q-value	2

Timing requirement: MLF

Fermi chopper spectrometer: a key of MLF

- A fast rotating iron, 500 Hz to 1 kHz
- Chopper and proton beam must be synchronized within 300 ns
 - high resolution / efficient use of

neutrons

• Large inertial moment, difficult to change quickly the rotating phase

→ Rotating speed fixed, extracted beam timing must be very stable and must have low jitters 2009/10/15

Timing requirement: MR

- Bucket-to-bucket transfer
 - MR: h = 9, RCS: h = 2
 - To fill the 8 RF buckets in 9 buckets, 4
 RCS cycles are used
 - Injection period: over 120 ms
- Must be injected into the proper RF buckets
- A precise phase control is required to avoid the dipole oscillation in the MR

Timing requirement

For both of MLF and MR, very stable beam timing is necessary

Common sense?

- Accelerators should be synchronized to the AC power line for stable operations
- Without strong RF feedback loops, the proton acceleration in a synchrotron is impossible
- \rightarrow the beam timing is under the influence of both AC line: 0.1% frequency variation KEK PS-booster: beam timing accuracy is $\sim 10\mu$ s

In J-PARC case:

- Non-AC-line-synchronized timing system is employed. The accelerators are operated without synchronization to the AC power line
- Radial feedback loop is not necessary to accelerate the proton beam in the J-PARC RCS, thanks to the magnetic alloy cavity, the digital LLRF, stable B-field
- \rightarrow the beam timing is very stable!

Non-AC-line-synchronized timing system

12MHz master clock generated by high-quality synthesizer 25Hz "Trigger clock" by counting master clock "Type" code: information of operation during next 40ms

• CCB to all J-PARC accelerator bldg via

fan-outs and optical cables, star configuration 10

Non-AC-line-synchronized timing system

Master clock: also used as reference of system clocks of digital systems, such as the digital LLRF control systems of the synchrotrons
Trigger: defined by a delay from trig clk

Overall trigger jitter: several hundred ps

Power supply stability

Question: Power supplies operated with non-AC-line-synchronized timing is stable?

- Synchrotrons: switching power supplies, not affected by the AC line
- Klystron DC power supplies (linac) may get influence
 - Amplitude/phase variations of linac RF: output energy fluctuation

Linac RF stability

- RF feedback system for the compensation of the voltage sag and long-term drift of the klystron DC power supply
- With FB: amplitude/phase controlled in ±1% and ±1 [deg] (meets requirements)
 without FB: ±5% and ±15 [deg]
- Cycle-to-cycle variations: also kept small

Linac RF stability

 SD of amplitude/phase: less than 2 [Arb. unit] / 0.05 [deg] (over 20 RF pulses)

Fig. 2: Amplitude and phase variations over 20 RF pulses. Red: average, green: standard deviation.

Variation of the linac beam energy: ±0.01% 2009/10/15

Magnetic Alloy (MA) cavity

Fig. 3: RCS RF system

Magnetic Alloy (MA) cavity

- Twice high Acc. field to ferrite cavity
- Wide-band (Q = 2): no tuning control necessary to cover frequency sweep: treated as a passive device
- Response is predictable and reproducible
- Simple Low-level RF (LLRF) control

Digital Low-level RF (LLRF) control

- Full-digital LLRF based on DDS (direct digital synthesis)
 - 10^{-7} frequency resolution, stable, reproducible
 - Analog VCO: only 10^{-4}

No radial feedback loop necessary with MA cavity, digital LLRF, stable B-field Stable beam timing possible

Fig. 4: Beam stability measurement setup.

Delay from trigger to beam was measured 2009/10/15

Table 2: Beam parameters.

repetition	25 Hz
macro pulse width	100 μ s
linac peak current	5 mA
chopping width	560 ns
number of bunch	2
beam power	18 kW

Edit Vertical Horiz/Acq Trig Display Cursors Measure Mask Math MyScope Analyze Utilities Help Tek 0.0% 50Ω ^Bw:4.0G A' ____ -224mV 400ns/div 25.0GS/s 40.0ps/pt 70.0mV/div c2 700mV/div 50Ω Bw:4.0G Horz Dly: 1.816µs 📄 1.0V/div 50Ω Bw:4.0G 1 144 acqs RL:100k Cons 6月19日,2009 14:21:0 Value Mean Min Max St Dev Count Info C203 Dely 859.4ns 859.28242n 858.7n 860.5n 233.0p 1.144k 354.1p 1.144k C1 Delv 1.797us 1.7966052u 1.796 1.799u

Fig. 5: Measured beam signals. Ch.2 (blue): the trigger signal, Ch.1 (yellow): the beam signal, Ch.3 (pink): the kicker trigger signal.

Fig. 6: Magnified view of the beam signal (the first peak) with an infinite persistence.

Table 3: Measurement results of 1144 beam pulses.

	mean	max	min	St. Dev.
Beam	1.797 μ s	1.796 μ s	1.799 μ s	354 ps
Kicker Trig.	859.3 ns	858.7 ns	860.5 ns	233 ps

Extremely low jitter!

Multi-batch injection to MR

Fig. 7: Three batches are injected without synchronization (only bucket selection)

Summary and outlook

- Beam jitter less than 1 ns is achieved
 - Non-AC-line-synchronized timing
 - Wide-band MA cavity
 - Digital LLRF control based on DDS
- For high intensity, phase FB is necessary
 - beam phase is affected
 - should be still reproducible
 - beam loading compensation,
 synchronization system are prepared