

Towards 3D Human Machine Interfaces

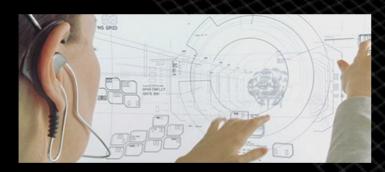
Generic 3D Viewer Extension for the Control Systems Displays at CERN

Piotr Golonka CERN, Geneva, Switzerland

ICALEPCS Conference, Kobe, Japan, October 2009


3D Viewer

- What it is and why (motivation)
 - What makes it different
- Application examples
 - ... and yet more examples
- Showcase for
 - Technology integration
 - Portability
 - Code reuse


HMI of many Control Systems at CERN

- User Interface Manager a part of PVSS
 - Graphical design tool for PVSS panels
 - Control widgets: buttons, text boxes, tables, combo boxes
 - Data visualization: trends, charts, histograms
 - Complemented with scripting language (CTRL)
- End result: classical operators' HMIs

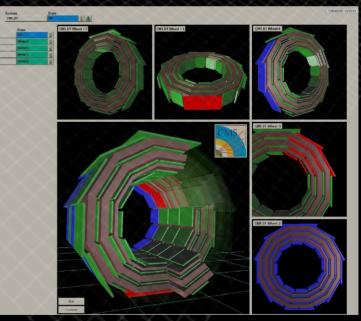
- Hollywood concept of a control room
 - Luckily it's not them who decide...
 - But maybe we could learn ...

3D SCADA?

• 3D commercial SCADA already available...

Serious use case studies (SAP AG)

"In manufacturing, 3D visualisation has not been used to its full potential.(...) While 3D visualisation holds a lot of promises it is not always a cost-effective or ideal solution. (...) Also, while certain use cases are frequently discussed as a potential uses for 3D they may not be appropriate for the task at hand. (...)"


> ["Use Cases and Concepts for 3D Visualisation in Manufacturing", Bernhard Wolf, Gerald Mofor, Jochen Rode, SAP AG]

- Communication and demonstration
- Plant and process engineering
- Training
- Localisation: locate hot spots for intervention
- Monitoring and control
- Maintenance and repair (visualize instructions)
- Become interesting where large scale come to play

3D Detector View

- Pioneer work:
 - 3D visualization for the Detector Control System of the CMS Detector at CERN
 - Robert Gomez-Reino, CMS Central DCS Team

- Motivation:
 - Geometrical alerts:

display of spatial correlation for parts of the detector deserving attention, easy and intuitive navigation

3D Detector View

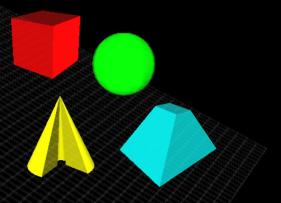
Replacement for classical synoptic view

- Geometrical view of detector subsystems
 - Familiar to shifter or expert
- Colors used to display the states
- Spatial correlation of events/alarms/states
- Observe details, while keeping general context, orientation, geography
- Intuitively navigate to desired part using mouse, click on the object for which you want more details

3D Detector View

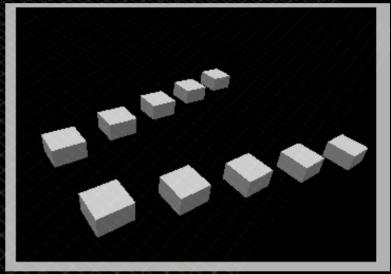
- Prototype implementation
 - Java3D, within an ActiveX allows to embed it within PVSS
 - Windows platform only...

- Showstopper for its wider adoption and use in the other experiments' Control Rooms
- Maintenance?

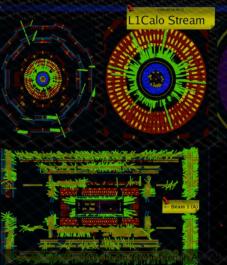

JCOP Framework 3D Viewer

- New implementation of the concept
 - Functionality of the existing prototype: replacement
 - Portable
 - Longevity and maintenance
 - Hosted as one of the JCOP Framework components
 - Use of standard technologies
 - Integrated with native PVSS UI technologies
 - EWO: Enhanced Widget Object
 - Controllable, scriptable
 - Generic, High level

Fw3DViewer: generic approach


- Programmer constructs a "scene"
 - A set of typically used shape types
 - Instances: shapes
 - added/removed dynamically
 - referred by a unique name
 - Shape have properties
 - Geometry, position, rotation
 - Color and transparency
 - 3D Viewer widget displays the scene,
 - Navigate, interact with shapes (by clicking them)
 - Integration with native PVSS mechanism
 - GEDI, scripting, properties, shape-selection events

Ad hoc geometry scripting


- Object names under strict control
 No unnecessary detail
 Variant:
 - extract data from a XML file, reprocess in the script
 - ... or from a database...

Geometry data

Geometry Database

 used by off-line data analysis (reconstruction) software and event displays

- how about we make use of it?
 - Need binding with controls-related entities

Real views of CMS and ATLAS

ICALEPCS 2009

Piotr Golonka, CERN EN/ICE-SCD

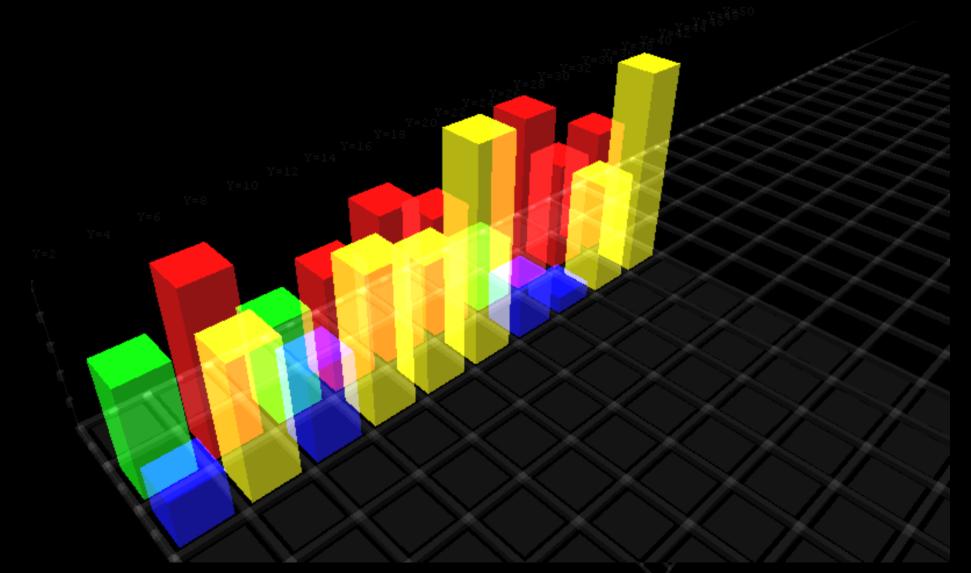
A mock-up detector example

Mockup "tracker" detector

- Color shows module's temperature
- Apparently one of the ring overheats...

A mock-up detector example

Making the outer layer semi-transparent, allows to see the state of the internal ring at once, without hiding the information about the outer one


A mock-up detector example

Fly through the detector, and click on the shape for which more details are needed

Piotr Golonka, CERN EN/ICE-SCD

Other applications: a 2D live histogram...

Trend plots, charts

value

value

Technologies

Technologies: Qt

- C++ toolkit for GUI & application development
 - Multi-platform (Linux, Unix, Windows, MacOS, embedded platforms)
 - Single-source portability made real
 - Developed by NOKIA (ex: Trolltech)
 - Your next Nokia smart-phone will likely feature it...
 - Open Source and commercial licenses
 - Huge open source community (KDE)
 - Picked up by PVSS since version 3.5
 - Enhanced Widget Object (EWO) native UI plugin mechanism

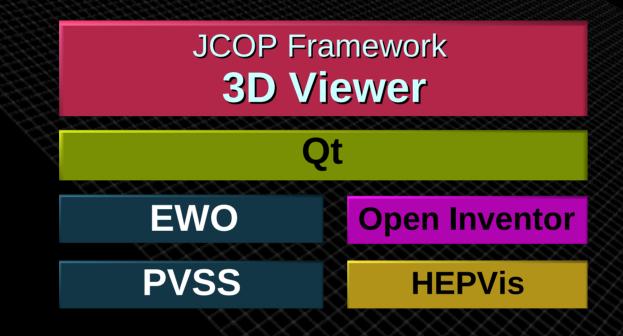
Technologies: Open Inventor

- Open Inventor: high level, 3D programming API
 - Designed and implemented by SSI in 90's
 - Aim: make graphics programming more efficient
 - A higher-level C++ layer on top of OpenGL
 - Retained mode:
 - the client interacts with a model built of geometrical shapes;
 - Open Inventor engine renders the scene with OpenGL, applying optimizations such as hidden surface removals
 - Simplifies code, esp. for non-OpenGL experts
 - Delivers a library of objects
 - Geometrical shapes: spheres, boxes, etc
 - Cameras, lights

Technologies: Open Inventor

- Multi-platform
 - Unix/Linux, Windows, MacOS, ...
- Interfaces
 - Native platform bindings
 - Qt
- Extendability: HEPVis
 - Shape types used in HEP software, such as GEANT, to describe geometry:
 - polyhedras, trapezoids,...

Technologies: Open Inventor


- Availability
 - Open Source (since 2000)
 - Visualizations Sciences Group (since 2009)
 - Commercial edition, support
 - Further development of the standard
 - Numerous Extensions
 - De facto standard for many industrial and scientific visualization
 - Coin3D: independent implementation of OpenInventor 2.1 API

Technologies: Integrate

fw3DViewer: ~ 40kB of C++ code that integrates and interfaces huge codes of external libraries, packed with functionality

- 3D Viewer: extension for PVSS-based HMI
 - Generic, fully programmable
 - Based on strong standard technology
 - Implementations of synoptic views
 - Subdetectors of CMS and ATLAS
 - Others may follow
 - LHC (?)
 - The range of possible use cases is open
 - Data viewers
 - Custom, generic widgets