A Sequencer for the LHC Era
(a technical presentation)

V. Baggiolini

R. Gorbonosov, D. Khasbulatov, R. Alemany, M. Lamont

Controls and Operations Groups
Beams Department

CERN

@] What s the Sequencer?

 Atool that helps the operators and physicists
commission and operate the LHC
— Executesthe countless tasks needed to produce beam
— Interfaces with most sub-systems of LHC controls

Sequencer

Timing Settings e --- PostMortem Interlock
System Managemt - System System

< LHC >

W Bagagioling, Accelerator Controls, CERM

b=

L

An Operational Tool

Sequencer has been in operations since early 2007

LHC hardware commissioning
— 60 sequences (~ 10'000 executions to test the whole LHC)

LHC beam commissioning
— 400 sequences and sub-sequences developed so far by OP

A vital tool for operations from the start

A modular system using advanced software technology

Could be packaged as a stand-alone product

W Bagagioling, Accelerator Controls, CERM

R

Sequencer runs Sequences with Tasks

Sequencer

T‘

— 4 Tasks

i

Sequence —

i W Bagagioling, Accelerator Controls, CERM

Sequencer runs Sequences with Tasks

Sequencer

e |f/else

« try/ catch
* loops
variables

Ln Y. Baggiolini, Accelerator Controls, CERM

Sequencer ~ Enhanced Debugger

Debugger:

« Run-through
* Breakpoints
« Step-by-step

LR R L h

Sequencer

Enhanced features:

« Skipping
« Configurable
on-error behavior
— Stop (+ repeat)
- Ignore
— Recover
— Abort

W Bagagioling, Accelerator Controls, CERM

h

Design Overview

~1 W Bagagioling, Accelerator Controls, CERM

3-Layer Architecture

Execution GUIs

sequencer
server

Timing
@60 System

Settings
Managemt

Devices

sequence
storage

4 SVN

or
DB

PostMortem
System

|nterlock
System

Based on Java and Spring Framework

W Bagagioling, Accelerator Controls, CERM

=+

Modular Design

sequencer server

Executor

al
et

sequence

Timing Settings . PostMortem Interlock
System Managemt System System

W Bagagioling, Accelerator Controls, CERM

o

' Modules are Exchangeable

Script-
based

Executor

.....

Timing Settings . PostMortem Interlock
System Managemt System System

W Bagagioling, Accelerator Controls, CERM

e
)

V Script-based Executor

« We did not want to implement scripting from scratch

— Sequencer ~ Debugger = Use Debugger
— We looked for an Script Interpreter with Debugger

 Found Pnuts written by Toyokazu Tomatsu, Sun n

« Pnuts scripting language

— Syntax similar to Java, just simpler
— Language features needed for sequences (if/else, try/catch, loops)
— Pnuts can call Java methods

 Pnuts Interpreter/Debugger
— Iswritten in Java
— Can be embedded into a Java process
« Script Executor is based on Pnuts interpreter/debugger

— Embedded into the sequencer server
— Debugger callbacks are redirected to our GUIs (e.g. "on-new-line’),

Enhancing the Pnuts Debugger

to add skipping and
configurable on-error behavior

W Bagagioling, Accelerator Controls, CERM

e
]

Sequence = Pnuts Script

(for the script-based executor)

Tasks Calls to Java methods

contained in Task Libraries

W Bagagioling, Accelerator Controls, CERM

e
Lad

X Steps of Execution: (1) Parsing
Bre Tree-shaped data structure
Interpreter

-

MethodCall

Else-Block

MethodCall

“Abstract Syntax Tree”

W Bagagioling, Accelerator Controls, CERM

e
o

¥ (2) Executing the Abstract Syntax Tree

Pnuts
Root callback

» Difficulty to implement MethodCall

enhanced sequencer EEWOES MethodCal
— Once the execution runs,
it Is out of our control MethodCall

— Callback happens only
after execution of a node

MethodCall

Else-Block

* To Implement enhanced sequencer MethodCall

features (e.g. skipping),
we need to intervene before the node is executed!

W Bagagioling, Accelerator Controls, CERM

e
L

Aspect-Oriented Programming (AOP)

it
Interpreter
TryBlock
We need to intercept execution! MethodCall

Put code around the nodes M
and intercept execution

N we do what we want!
I t L CatchBlock
MethodCall

his one use-case of AOP:
Add a (e.g. skipping) to an existing system

W Bagagioling, Accelerator Controls, CERM

[
h

Why Aspect-Oriented Programming?

Why not modify the Pnuts source code?

1. We might not have source code
2. We don't want to maintain 3" party source code

We used Aspect) (implementation of AOP for Java)

« The code can be inserted into an existing binary
(e.g. into the Pnuts interpreter)

W Bagagioling, Accelerator Controls, CERM

e
b |

Summary

» The LHC sequencer is operational since 2007
and a vital tool for operations

« Aspect-Oriented Programming is something to be
aware of

W Bagagioling, Accelerator Controls, CERM

ek
(=]

NHTID S|oauoD JoRIB Ry IUoIBBeg A O

L |

Aspect-Oriented Programming

A programming paradigm
AOP vs Object-Oriented Programming (OQO)

— Not a replacement for OO but a complement
— Forthings that cannot be handled well in OO

For functionality that is typically scattered over a whole
software source base, e.g.

— Security checks (in all public methods entering a server)

— Caching (in all methods that retrieve data over the network)

— DB transaction management (in all methods that participate in
a DB transaction)

AOP approach:
— Write the code for security/caching/transactions once
— Tell AOP compiler where to insert it into the code base

Exists for most languages

W Bagagioling, Accelerator Controls, CERM

b
=

Sequences represented in Java

« We write sequences in Java, then translate to Pnuts

— Well-known language v
— (Good development tools v

— Compilation finds many possible mistakes v

* Translation based on Abstract Syntax Tree

1. Parse Java Sequence into Abstract Syntax Tree

2. Check AST for somerules

3. Convertfrom AST to Pnuts source code

— Implemented with Java Compiler Compiler (JavaCQC)

21

A Snippet of a Sequence

//] Simulate powering failure on the power converter
fgc.simulateFault();

/// \Walt to see the fault happened on the power converter
circuit.checkSimulatedFault();

[/l Verify the converter maximum performance buffers
fgcMeasUtil.checkIErr(pcInfo.getIErrMax());

/1 Walt until the power converter has finished sending PM data
fgc.waitPostMortemFinished();

W Bagagioling, Accelerator Controls, CERM

b-d
-

Other usage of Abstract Syntax Tree

Tools that “reason about” source code use an AST

— |IDE like Eclipse or Netbeans
— Static source code checking tools

Checking that sequences
follow certain rules

Sequence Editor Tool
— E.g. code completion

Automatic manipulation of
sequences

— Add boilerplate code

TryBlock

MethodCall
MethodCall

MethodCall

MethodCall

CatchBlock

MethodCall

:
i

W Bagagioling, Accelerator Controls, CERM

bd
fad

Parts are Developed by Different People

core
team

several
developers

s

sequencer server

. e

. library

Timing
System

Settings
Managemt

Executor

Devices

operations
team

..

sequences

| PostMortem
System

|nterlock
System

24

