
International Conference on Accelerator and Large Experimental Physics Control Systems
October 12 – 16, 2009, Kobe International Conference Center, Kobe , Japan

JDATAVIEWER – JAVA-BASED CHARTING LIBRARY

G. Kruk, M.Peryt, CERN, Geneva, Switzerland

Abstract

The JDataViewer is a Java-based charting library developed at CERN, with powerful, extensible and easy to use function editing capabilities. Function edition is heavily used in
Control System applications, but poorly supported in products available on the market. The JDataViewer enables adding, removing and modifying function points graphically (using
a mouse) or by editing a table of values. Custom edition strategies are supported: developer can specify an algorithm that reacts to the modification of a given point in the function
by automatically adapting all other points. The library provides all typical 2D plotting types (scatter, polyline, area, bar, HiLo, contour), as well as data point annotations and data
indicators. It also supports common interactors to zoom and move the visible view, or to select and highlight function segments. A clear API is provided to configure and customize
all chart elements (colors, fonts, data ranges ...) programmatically, and to integrate non-standard rendering types, interactors or chart decorations (custom drawings). Last but not
least, the library offers class-leading performance.

Since the initial implementation in 2005, the library has been very well perceived by developers. The number of applications depending on it, has been rapidly growing over the past few
years. Diversity of uses has also increased over time, changing from trivial signals displayed offline, to applications used to edit function settings, and GUIs displaying data coming with a
relatively high frequency (10-20Hz).

ICALEPCS'09ICALEPCS'09

Conclusions

THP093

Chart interactors are non-graphical components that can be used to interact with the chart. Every instance of an interactor reg-
istered in the chart is notified about all mouse and keyboard events received by the chart, so that it can perform appropriate ac-
tions. The library provides the most commonly used interactors like ZoomInteractor that zooms in and out selected regions
of the chart or a DataPickerInteractor that displays as a tooltip the coordinates.
One of the key features offered by the package is a graphical and a tabular edition of functions. This functionality has been im-

plemented via a set of edition interactors that are well integrated with the Chart e.g. AddPointsInteractor, Remove-
PointInteractor, ChangePointInteractor, or AlignPointsInteractor. Every interactor can define its con-
trol components – typically buttons or a drop down list - which are used to activate them or to modify their properties. All inter-
actors fire events every time an interaction is performed, providing additional information when applicable e.g. nature of the in-
teraction or coordinates of modified points. Therefore one can subscribe to such events and execute custom actions.
The chart provides also a method to create a toolbar containing all control components defined by the associated interactors

and undo/redo operations that can be performed on the edited function [Fig. 9, 10].

4. Interactors and Functions Edition

The package supports two other types of components that can be added to the chart: annotations and decorations [Fig. 7, 8].
Annotations can be used to display information about data points e.g. Y value of each point or a custom label associated with it.

Decorations are dedicated for custom text or drawings which are not related to specific data sets. Two custom decorations are in-
cluded: ChartAnnotation that can be used to display a custom label on a chart and DataIndicator that is dedicated to
marking a single value or a range of values. This functionality is typically useful when one wants to highlight limits of a signal
(to see whether they are exceeded or not) or values which have some special meaning .for the displayed data.

3. Annotations and Decorations

The DataViewer is a graphical component (panel) that simplifies layout and display of multiple charts. It may contain a
number of views, where each consecutive view may include one or more charts. Only one view can be visible at a time but one
has a possibility to browse through all available views and select the one that should be displayed. It is possible to dynamically
modify layout, maximize or minimize selected charts and change a current rendering type of selected plots e.g. from a polyline
to bars or to a table [Fig. 11].

5. DataViewer Component

In typical applications, all chart attributes are configured directly in Java code using an API provided by the library. However
in some cases it might be interesting to describe chart properties and properties of all its components using an external configu-
ration file. Such functionality might be desired when the same look and feel of the chart should be applied in several applica-
tions (to avoid code repetition) or by frameworks that automatically generate chart components.
This possibility has been implemented in JDataViewer using the Cascade Style Sheets (CSS) format. Most of the chart proper-

ties and properties of its components (plots, grids, scales...) can be configured using appropriate tags in a CSS file.

6. Configuration using CSS

chart {
 renderingType: 'POLYLINE';
 interactors: 'DATA_PICKER, ZOOM';
 legendTitle: "My Legend";
}
scale[axis='X'] {
 title: 'X coordinates';
 titleAlignment: LEFT;
 foregroundColor: BLUE;
}
dataset[index='1'] {
 renderingType: 'AREA';
 strokeColor: #FF0000;
}

Example of a CSS file defining properties of the chart and its components.

The central component of the library is the Chart class. The chart is a graphical component that initializes and coordinates the
drawing process of all other chart elements i.e. plots and decorations, scales, grids and the legend.
The chart can contain a single X scale and one or more Y scales. Steps and sub-steps of every scale are computed by the associ-

ated StepsDefinition. The default implementation computes steps using 1, 2 and 5 factors, but there are also implementa-
tions for logarithmic, time and category (custom) scales [Fig. 1, 2, 3, 4].

1. Chart Component

In order to display a plot on the chart one has to first create an instance of the DataSet interface that represents a single series
of data points (X, Y). There are several implementations of this interface provided by the library but the two most frequently
used are DefaultDataSet for “snapshot” data [Fig. 1, 2, 4] and ShiftingDataSet for continuous signals [Fig. 3]. The
package contains also a DataSet3D which can be displayed as contour plot [Fig. 5, 6].
Once data sets are created they can be connected to appropriate chart renderers which are responsible for the drawing process

of data points. There are several types of renderers implemented in the library and each draws data in a specific way e.g. the
PolylineChartRenderer draws data sets as poly lines, the BarChartRenderer paints data points as bars, etc. Many
renderers can be added to the chart and each of them paints plots from all associated data sets [Fig. 1, 4].

2. Data Model and Renderers

Figure 3: Time scale on X axis. Data plotted using ShiftingDataSet
Figure 4: Category scale on X axis

Figure 1: Chart component with three rendering types associated with
three different Y scales

Figure 2: Logarithmic scale on X and Y axis

Figure 5: Contour chart (image) rendered using DataSet3D Figure 6: Three charts with synchronized X axis

Figure 8: Chart with annotations and data indicators Figure 7: Bar chart with decorations for Beam1 and Beam2

Figure 9: Graphical edition of a function Figure 10: Tabular edition of a function

Figure 11: DataViewer component

7. Extensibility

 The library offers a reach set of generic and configurable components, both graphical and non-graphical. Although this is satis-
factory for majority of controls applications, in some cases more specialized components or behaviour might be required.
Thanks to the clear API, all existing classes can be extended and tailored to specific needs. Also custom renderers, interactors

and decorations can be implemented and easily integrated with the chart if necessary.

