

Prototype of a DDS-Based High-Level Accelerator Application Environment

N. Malitsky, J. Shah (BNL)

N. Hasabnis (Stony Brook University)

R.Talman (Cornell University)

S.Shasharina, N.Wang (Tech-X Corp)

Outline

- Background
- EPICS-DDS Package
- Composite Example
- Summary

Typical three-tier high level application environment

Standard Publish/Subscribe Specifications

as candidates for high-level interface, [Summer 2008]

Middleware	Language	Data Type	Data Content Filtering	QoS	Complexity	Year
CORBA Event Service	C++, Java,	Generic and typed events	no	no	hard	1997
CORBA Notification Service	C++, Java,	Structured events	yes	yes	hard	~2000
Java Messaging Service (JMS)	Java	five types: text, map, bytes, stream, object messages	filters are message properties	no	easy	~2000
High Level Application (HLA)	C++, Java,	Sequence of octets	no	yes	TBD	~2000
Data Distribution Service (DDS)	C++, Java,	User-specific data types	yes	yes	easy	2004

NSLS-II commissioning: 2013

Case Study: QoS-enabled Publish/Subscribe Technologies for Tactical Information Management

D. Schmidt. Tutorial on DDS

DARPA PCES Capstone demo, 4/14/05, White Sands Missile Range

DDS Data-Centric Publish Subscribe Model

Topics of Typed Global Data Space: a logical data space in which applications read and write data asynchronously, decoupled in space and time

Publisher/Subscriber: produce/consume information into/from Global Data Space

QoS: reliability, predictability, availability, timeliness, etc.

DDS-Based Conceptual Design

Main Idea: Start the implementation of the DDS specification in the form of the EPICS extension based on the Channel Access protocol Thick Thin Application **EPICS-DDS** Client Applications Application e.g. MMLT, others CAC CAC IOC IOC IOC Middle Layer Virtual CA Online Model Machine Accelerator Servers CAC IOC IOC IOC Distributed . . . Front-Ends Physical Physical Virtual Device Device Device

Benefits Brought by DDS to EPICS

The integration of these two technologies addresses five major tasks:

- First, DDS brings an industrial standard interface to the accelerator online environment allowing to decouple a variety of high-level applications and toolkits from the underlying low-level control systems, such as EPICS, TINE, TANGO, and others.
- Second, the DDS topic-oriented approach elevates the EPICS Channel Access protocol to the high-level applications replacing the additional RPC-like communication interfaces.
- Third, DDS creates a basis of Service-Oriented Architecture (SOA) promoting decoupling of the service interfaces from their project-oriented implementations [Nanbor Wang, Tech-X Corp.]
- Fourth, the DDS specification introduces some guidance for extending the EPICS infrastructure with the relevant set of quality of service.
- Finally, the DDS technology extends the EPICS run-time environment with the relational model creating a platform for adding relational queries and integration of full-scale Data Stream Management Systems (DSMS) for data stream processing and archiving.

EPICS-DDS Package

http://sourceforge.net/projects/epics-dds/

- EPICS-DDS Middleware: implementation of the OMG Data Distribution
 Service (DDS) interface based on the EPICS Channel Access (CA) protocol
- PV Data: generic hierarchical collection of FieldType's and PVField's including the PV Structure suggested by the Java IOC project
- Accelerator Model Interfaces (AMI): collection of the accelerator-specific interfaces and data containers based on the PV Structure
- Accelerator Model Servers (AMS): accelerator-specific middle layer based on the EPICS Portable CA Server (PCAS)
- UI: EPICS-DDS script bindings including Python

Composite Example

Benefits Brought by EPICS to DDS:

- First, EPICS represents de facto standard open-source software with a multi-year history of numerous successful projects. As a result, it creates a solid basis for developing the open source implementation of the DDS specification.
- Moreover, the special features of the Channel Access approach provide the advantageous means for solving the complex DDS issues, for example server-based event filtering. The new PVData concept from the coming EPICS 4 version introduces another important idea addressing the recent OMG RFP: Extensible and Dynamic Topic Types for DDS.

New Tasks (life after ICALEPCS'09)

