

Recent Progress of the RF and Timing System of XFEL/SPring-8

H. Maesaka, T. Ohshima, N. Hosoda, S. Matsubara, K. Tamasaku, T. Fukui and Y. Otake: RIKEN/SPring-8 M. Musha: Univ. of Electro-communications

Outline

- X-ray Free Electron Laser (XFEL) project at SPring-8
- Design of the RF and timing system
 - Requirements
 - Design concept
 - Optical RF and timing distribution system
 - Precise low-level RF control system
- Water-cooled enclosure
 - Water-cooled 19-inch rack
 - Water-cooled optical cable duct
- Performance measurement
 - Optical system
 - Low-level RF system
- Summary

X-ray Free Electron Laser (XFEL)

- To generate coherent and intense x-rays.
 - For life sciences and material sciences etc.
- SASE process
 - Self-Amplified Spontaneous Emission
 - No optical cavity
 - Long undulator beamline is needed
 - To give rise to the interaction between electrons and x-rays.
- Low-emittance and high-peak-current beam are required.

Project Overview

- X-ray wavelength: < 0.1 nm
- Beam energy: 8 GeV
- Key technologies
 - Low-emittance thermionic electron gun: 0.6π mm mrad
 - High-gradient C-band accelerator: 35 MV/m
 - Short-period in-vacuum undulator: $\lambda_u = 18 \text{ mm}$
- First FEL light will be delivered in 2011.

XFEL Machine Layout

- 8GeV linear accelerator
 - 238 MHz, 476 MHz, L-band (1428 MHz), S-band (2856 MHz) and C-band (5712 MHz)
- Key parameters of SASE-FEL
 - Normalized slice emittance: 0.7 π mm mrad
 - Peak current: 3 kA
- Slice emittance
 - Accelerate without emittance growth
- Peak current
 - Compress the longitudinal bunch structure
- Bunch compression
 - Velocity bunching in the low energy region
 - Three bunch compressors (magnetic chicane)
 - Bunch length: 1 ns → 30 fs (FWHM)
 - Peak current: 1 A → 3 kA

Bunch Compressor

- In a magnetic chicane, low-energy electrons travels longer way than high-energy electrons.
- Accelerator gives an energy chirp to the beam.
 - Energy of head electrons is made lower than that of tail electrons.
 - Strength of the energy chirp is very sensitive to the compression ratio.
 - → Precise RF phase and amplitude control system is demanded.

Design of the RF and Timing System

Requirements for the Timing System

- Should be as stable as possible!
 - This system provides the timing standard of the whole system.
- Timing stability of the acceleration field
 - Phase stability: 0.1 degree (rms) of 5712 MHz
 - Equivalent to 50 fs (rms)
- Amplitude stability of the acceleration field
 - 0.01% (rms)
- Many RF signals are needed
 - 5712MHz, 2856MHz, 1428MHz, 476MHz, 238MHz and Trigger pulse
- Long transmission length
 - Accelerator: 400 m
 - From the gun to the experimental hall: 700 m
 - Some experiments (pump-probe etc.) demand a precise time reference.

Design Overview

- Optical RF and timing distribution system
 - Attenuation of an optical fiber is much smaller than a metal cable
 - Need to stabilize the fiber length (1 μm = 5 fs)
- Low-level RF control system
 - IQ (In-phase and Quadrature) modulation and demodulation
 - High-speed D/A and A/D converters for baseband signals

Design Concept

- Eliminate fluctuation sources as much as possible before applying active feedback loops.
 - Select stable components (ICs, cables, passive elements ...)
 - Small temperature coefficient
 - Low-noise electric device
 - Stabilize the temperature of each component.
 - Provide low-noise electric power.
 - Reduce vibration of cables
- If there still remain any fluctuations, we use active feedback loops.

Optical RF and Timing Distribution System

- Wavelength Division Multiplexing (WDM) technique
 - To combine all signals to one fiber.
- Phase-stabilized optical fiber (~ 1 ps/km/K)
- Water-cooled 19-inch rack and water-cooled optical fiber duct
 - To reduce the thermal drift of the RF phase and amplitude
- Length-stabilized fiber link
 - Additionally prepared for the phase reference.
 - Michelson interferometer monitors the fiber length.
 - Fiber stretcher controls the fiber length.
 - · Time drift of the WDM fiber is controlled at the receiver side.

Passive

~100fs stability

Active

~10fs stability

Low-level RF Control System

 IQ modulator produces the acceleration RF signal with appropriate phase and amplitude.

$$V(t) = I(t)\cos(\omega t) + Q(t)\sin(\omega t)$$

- IQ demodulator detects the phase and amplitude of the acceleration RF.
- Baseband waveforms are processed by VME high-speed D/A and A/D converter boards.
 - Sampling rate: 238 MSPS
 - Resolution: 14 bits (D/A) and 12 bits (A/D) ig
- All modules are enclosed in a watercooled 19-inch rack.
 - To reduce the thermal drift.
- DC power is distributed from a low-noise power supply
 - Clean and stable power
 - Small heat load for the 19-inch rack

Water-cooled Enclosure for the temperature stabilization One of the features of our design

Water-cooled 19-inch Rack

- Heat exchanger cools the circulating air.
- Temperature stability of the cooling water is 0.4 K (p-p).
- Side-blowing type

typically 0.2 K (p-p)

- Not to shake cables around the front panel.
- Cable vibration is critical in the femto-second region!
- VME boards are horizontally mounted.
- Front blowing-type
 - Other circuits (magnet power supply etc.)

Side-blowing type

Front-blowing type

Temperature Stability of the Rack

- We tested the temperature stability of the water-cooled rack.
- We intentionally decreased the water temperature by 0.4 K and outside temperature by 4 K at the middle of the measurement.
- Inside temperature drift was 0.42 K.
 - Appropriately follows the water temperature.
 - Almost no effect from outside.

Water-cooled Optical Fiber Duct

- Optical fiber temperature is stabilized by cooling water.
- Stability measurement
 - Water temperature fluctuation: 0.24 K (p-p)
 - Outside temperature fluctuation: 3.4 K (p-p)
- Inside temperature is regulated within 0.12 K (p-p)
 - < 200 fs (p-p) for 1km phase-stabilized optical fiber (PSOF)

Photograph of the Klystron Gallery

 A part of the RF and timing system has been installed.

Performance Measurement of the RF and Timing System

SSB Phase Noise

- We measured the SSB (Single Side Band) phase noise of the optical RF and timing distribution system.
 - Master oscillator itself
 - After transmission with the optical distribution system.
- No deterioration in < 1 MHz
- A little degradation above 1 MHz, but small enough (~7 fs)
- Time jitter is estimated to be 30 fs (rms)

Stability of the Optical System

- Optical system was enclosed in a thermostatic chamber.
- Measurement period: 24 hours
- Temperature stability: 0.7 K (p-p)
- Phase stability: 0.71 degree (p-p)
- Amplitude stability: 0.86% (p-p)
- Drifts of detectors: 0.2 degree (p-p) and 0.06% (p-p)

Time [y/m/d h:m]

Stability of the Low-level RF System

- VME-D/A → IQ modulator → Solid-state Amp. → IQ demodulator → VME-A/D
- Temperature stability: 0.3 K (p-p)
- Phase stability: 0.30 degree (p-p)
- Amplitude stability: 0.56% (p-p)
 - Resolution limit of 12-bit A/D converter.
 - Only random fluctuation can be seen. (No slow drift)

Error Correction of IQ modulator

- IQ modulator and demodulator have some errors.
 - Phase: ~ 5 degrees (p-p)
 - Amplitude: ~ 10 % (p-p)
 - These errors disturb the fine tuning of the accelerator.

 Cause an interference between the feedback controls of RF phase and amplitude

- The error itself does not drift
 - Can be corrected by software.
- After correction
 - Phase error: 0.3 degree (p-p)
 - Amplitude error: 1% (p-p)
- Details are presented by T. Ohshima (WEP023).

set phase (deg)

Summary (1/2)

- XFEL/SPring-8
 - Generates coherent and intense x-rays with 0.1 nm wavelength region.
- Requirements for the acceleration RF field
 - Phase stability: 0.1 deg. (rms) of 5712 MHz (~ 50 fs)
 - Amplitude stability: 0.01% (rms)
- Precise RF and Timing system
 - Optical RF and timing distribution system
 - WDM technique and Length-stabilized fiber link
 - Low-level RF control system
 - IQ modulator and demodulator

Summary (2/2)

- Temperature regulation
 - Water-cooled 19-inch rack
 - Water-cooled optical fiber duct
 - Both enclosures can reduce the temperature fluctuation within 0.4 K (p-p).
- Phase stability
 - Optical system: 0.71 degree (p-p) of 5712 MHz
 - Low-level RF system: 0.30 degree (p-p) of 5712 MHz
 - Sufficient for XFEL/SPring-8
- Amplitude stability
 - Optical system: 0.86% (p-p)
 - Low-level RF system: 0.56% (p-p)
 - This drift is suppressed by a klystron that is operated at saturation point.

Acknowledgements

- We thank
 - Mitsubishi Electric TOKKI System
 - Kinden
 - And many other companies
 - for their grate efforts to develop the precise RF and timing system.
- Thank you for your attention!

SCSS Test Accelerator

- Extreme ultraviolet (EUV) FEL facility
 - Wavelength: 50 60 nm for saturated output
 - Beam energy: 250 MeV
- Saturated EUV laser light has been stably generated since 2006.

XFEL Machine Parameters

Beam Energy	8 GeV
Bunch Charge	0.3 nC
Normalized Slice Emittance	0.7π mm mrad
Repetition Rate	60 pps maximum
Peak Current	3 kA
Bunch Length	30 fs (FWHM)
Beam Radius	40 mm (RMS)
Undulator Period	18 mm
Undulator K-value	2.2 maximum
Undulator Gap	3 mm minimum
Number of Periods	275 x 18 = 4950

Velocity Bunching

- For a low-energy beam (~1MeV)
- Head electrons are decelerated and tail electrons are accelerated by an accelerating cavity.
- Tail electrons approach head electrons.

Peak Current and FEL Gain

FEL parameter Peak current

$$\rho = \left[\frac{I_e \gamma \lambda^2}{16\pi I_A \sigma_x \sigma_y} \left(\frac{K[JJ]}{1 + K^2}\right)^2\right]^{1/3}$$

FEL gain length

$$L_{G1D} = \frac{\lambda_u}{4\pi\sqrt{3}\rho}$$

FEL power growth

$$P_{FEL} \propto \exp(\alpha \cdot L_G)$$

E/O and O/E Converters

- E/O Converter
 - Light source: DFB-LD (Distributed FeedBack Laser Diode)
 - LiNbO₃ Mach-Zehnder modulator
- O/E Converter
 - Fast photo-diode

O/E Converter

Fiber Length Stabilization

- Frequency-stabilized laser
 - Length standard
 - Frequency is locked to C₂H₂ absorption line.
- Transmitted light is returned by a Faraday rotator mirror.
- Polarization beam splitter discriminates the transmitted light and the returned light.
- Returned light is fed into an interferometer to monitor the fiber length.
 - 55MHz Acousto-optic modulator (AOM) enables a heterodyne detection of the optical phase.
 - Digital phase frequency discriminator (DPFD) for the phase detection.
- Piezo-electric fiber stretcher controls the fiber length.

Fiber Length Stabilization Experiment

 We tested the fiber length stabilization system by using a optical fiber along the SPring-8 storage ring.

Length fluctuation below 30 Hz was suppressed to

1 μm level.

PID Feedback Loop

- RF phase and amplitude detected by the IQ demodulator are fed back to the IQ modulator.
- PID (Proportional-Integral-Differential) algorithm
- Phase stability: 0.02 degree rms for 238 MHz
- Amplitude stability: 0.03% rms for 238 MHz

Stability of the Optical System

