
Sulhee Baek*, Sangil Lee, Mikyung Park , Hoonkyun Na and Myeun Kwon
National Fusion Research Institute (NFRI), Daejeon, Republic of Korea

Inheritance Hierarchy of Library Properties
KWT libraries depend on Qt-4.3.2 and some plotting widgets among
them inherit properties from QWT libraries. In addition, to
communicate with EPICS, Qt-CA library in KWT interfaces with EPICS
base-3.4.18.2. Some classes use boost library as a Standard
Template Library support package. The libraries listed below are

ABSTRACT
The KSTAR Widget Toolkit (KWT) was developed as a development
toolkit of channel access (CA) client application for the KSTAR
commissioning. The KWT is based on Qt library and includes
channel access interface to communicate with EPICS. In order to

DEVELOPMENT STATUS
Items listed below show the requirements for the KSTAR Operator
Interfaces(OPIs) or the development toolkit of them.
Requirements for KSTAR OPIs;
• Performance
• Stable EPICA CA communication

The 12th International Conference on Accelerator and Large Experimental Physics Control Systems

Template Library support package. The libraries listed below are
prerequisite libraries for the KWT installation and inheritance
hierarchy of the KWT is shown in Figure 1 in detail.
• Qt -4.3.2
• QWT-5.0.0rc1
• EPICS base-3.14.8.2
• Boost library

channel access interface to communicate with EPICS. In order to
enhance development speed and increase aesthetic quality of
application, 18 plug-in widgets were developed to enable for
developers to create new panel using drag and drop method. Some
of them use QWT as a plotting library and some widgets display
alarm status with a specified color according to the EPICS alarm
convention. The KWT has cross-platform development environment
and feasibility of extending new widgets using Qt plug-in API with
plenty of documents and tutorials. Around 120 panels and several
applications such as multi-channel plotting tool, process variable
searching tool, and logbook application were developed through
the KWT and they proved functionality of the KWT being used for
the integrated control and machine control during the KSTAR
commissioning. The KWT is applicable to fast and easy
development of operator interfaces and applications for the EPICS-
based control system.

Principal of the Qt-CA Interface
The core libraries of KWT Qt-CA interface are AttachChannelAccess
library and ChannelAccessThr library. Working procedure of
AttachChannelAccess is drawn in Figure 2 briefly. Usually this library
is used for a widget containing child widgets of a UI file created by

KWT Widgets
The KWT including 18 widget classes are shown in Table 1 and brief
explanations about each widgets are as follows.

OPI Development Example with the KWT
Widgets in the KWT were designed as plug-in widgets to
be inserted using Qt designer. Below procedures show a
simple example using the KWT.
•Create a Widget using Qt designer.

Table 1: Brief explanations about the KWT widgets

Widget name Data type Appearance Feature

• Stable EPICA CA communication
• Easy & fast development
• Maintenance
• Usability
• Consistency of appearance

Features of KWT Library
KWT inherits the features listed below from Qt library.
• Intuitive C++ class library
• Portability across desktop and embedded operating systems
(uses Qt cross-platform development environment but Qt-CA interface
was not fully tested on platforms except linux)
• Integrated development tools with cross-platform IDE (it’s possible to
use Qt designer, which is a Qt cross-platform integrated development
environment (IDE), to make OPI panels because KWT widgets were
designed as custom plug-in widgets for it.)
• High runtime performance and small footprint on embedded

Figure 1: Inheritance hierarchy of the KWT

is used for a widget containing child widgets of a UI file created by
Qt designer. After initialization, this instance acquires list of
CAobjects from the QWidget or UI file. For every CAobjects it links
event filter and work thread. If the CAobject has control property, it
is registered as control object. The work thread created using
ChannelAccessThr class updates all hash tables for all CAobjects.
Hash table structure named by ChAccess which is updated by work
thread is shown in Figure 3. It is updated at every pre-defined
period or CA monitor event.

•Create a Widget using Qt designer.
•Drag a CADisplayer instance from KSTAR widget box and
drop it to the proper position.
•Configure it with a valid PV name. Figure 5 shows
screenshot of Qt designer inserting KSTAR widget into a
UI file. PV name property is shown in the property editor
which is located in right lower part.

•Save the widget as uifilename.ui.

AttachChannelAccess N/A Hidden • Qt-CA attach library

ChannelAccessThr N/A Hidden • Qt-CA thread library

CAUITime N/A Hidden • Define screen rate
(Periodic or Event-driven)
•Master PV locks control widgets

CADisplayer EPICS AI • Displays numeric data with the corresponding
alarm information with a specific color.
• Pops-up SinglePlot with right clik

CABoButton EPICS BO • A pair of QPushButtons with a false button
and a true button

CAMbboButton EPICS MBBO • A collection of multiple CAPushButtons for
EPICS mbbo record

CAImageMbbi EPICS MBBI • A collection of multiple QLables for EPICS
mbbi record

StaticGraphic N/A • A symbol library including vacuum devices,
arrows, ellipse, rectangle, etc.

CAGrahpic EPICS BI • Inherits symbols from StaticGraphic lib. and
displays alarm status

CALabel EPICS BI, AI,
String, MBBI

• Displays text label corresponding to the value

CAWclock EPICS
timeStamp

• Displays time information as text label

CAPushButton BO • A QPushButton which sends operator’s
command to the PV

CAColorCheckbox PVname and
plot color

• A part of CAMultiplot or CAMultiwaveplot
widget which displays color information

CALineEdit EPICS AO • A QLineEdit which sends entered numeric
Figure 5: Screenshot of Qt designer and KSTAR widgets

•Save the widget as uifilename.ui.
•Develop a simple main application(main.cpp) referring to
Table 2.

•Compile the main application.
•Execute it.

APPLICATIONS OF KWT TO KSTAR

Table 2: A simple example of main application

#include <QtUiTools>
#include <QtGui>
#include “qtchaccesslib.h”
int main (int argc, char *argv[])
{
QApplication app(argc, argv);
AttachChannelAccess attach(“uifilename.ui, 1);
attach.SetUiCurIndex(1);
QWidget *pwidget = attach.GetWidget();
Pwidget->show();
Return app.exec();
}

LICENCE POLICY AND S/W RELEASE
KWT is available as free software under the GNU General
Public License (GPL). The source code for the KWT will be
released on SourceForge in the CVS repository of the KWT
project.

CALineEdit EPICS AO • A QLineEdit which sends entered numeric
data to the PV

SinglePlot EPICS AI • A single channel plotting class using QWTPlot
library

CAMultiplot 10 EPICS AI • A multi-channel plotting class using QWTPlot
library for ai record

CAMultiwaveplot 10 EPICS
Waveform

• A multi-channel plotting class using QWTPlot
library for waveform record

KSTAR OPI Panels
Over than 120 OPI panels were developed
using KWT and about 50 panels were
developed using other EPICS extensions such

Figure 2: Working procedure of AttachChannelAccess library

Figure 3: Hash table structure updated by work thread

Figure 4: Appearance of SinglePlot and CAMultiplot

project.

CONCLUSION
Even if it took more time and effort
to develop not only OPI panels but
also development toolkit, KSTAR OPIs
developed using KWT library satisfied
almost requirements concerning
performance, easy & fast
development, nice maintenance,
usability, and consistency of
appearance. However, abnormal stop
occurred intermittently at some CA
server down should be fixed as soon
as possible to enhance stability of CA
communication.

developed using other EPICS extensions such
as QtCAtool, MEDM, EDM. During the KSTAR
commissioning, they were used for remote
operation without any serious problems. The
OPI panels with KWT were well accepted by
the operators because of the simple panel
switching and consistent appearance.
Besides OPI panels, some applications such
as multi-channel plotting tool, process
variable searching tool, and logbook
application were developed using KWT library.

Figure 6: Operator interface panels developed using KWT library and EPICS extensions

