ORION Gateway Design for Feedback Controls Connectivity

Larry Doolittle, Alex Ratti, Carlos Serrano, Andrea Vaccaro

Lawrence Berkeley National Laboratory

ICALEPCS'09, Kobe, October 2009

Index

- Introduction
- 2 Node structure
- 3 Data input interface
- 4 Data output interface
- **5** Ethernet Access
- 6 Results
- Conclusions

ORION Introduction

Introduction

Structure

interface

Data outpu interface

Ethernet Access

Results

Conclusio

ORION = Optical Redundant Input/Output Network

- One FPGA per sector, linked with fiber optics
- All FPGAs operate on a common clock frequency
- ullet Periodically ($\sim \! 10 \text{ kHz}$) communicates BPM data (or other hard-real-time accelerator info) from every node to every other node
- Assume computation (e.g., feedback equation

$$B = \int \mathbf{A} \cdot (\mathbf{x} - \mathbf{x}_{SET})$$

-) will also be part of FPGA
- Fault-tolerant ring

ORION ring network: Normal operation mode

Introduction

Node

Data input

Data outpur interface

Ethernet

Results

Conclusions

ORION ring network: Fault recovery mode

Introduction

Structure

interface

Data output interface

Ethernet

Results

Conclusions

Structure

Introduction

Node Structi

Data input interface

Data outpu interface

Ethernet Access

Results

Conclusions

Message structure and terminology

- ullet Repeated every $100 \mu \mathrm{s}$ or so
- One block comes from one node
- M = number of nodes

1 message

I/O interfaces

Introduction

Node Structure

Data input interface

Data output interface

Ethernet Access

Results

Conclusion

• Functionality of one node (out of \sim 30)

• FIFO tuned so one propagation time through node is exactly the length of one block.

Input timing diagram

Introduction

Structure

Data input

interface

Data output interface

Ethernet Access

Results

Conclusio

- All nodes and all spins provide reset at the same time (plus or minus one clock cycle)
- Data introduced into the network while provided gate is set
- Data input bus doubled for a and b links
- X represent don't care and D series of octets in payload

RESET	
GATE	
DATA	X X X X X X X X X X X X D D D D D D D D
ALIDATE	

Output timing diagram

Introduction

Structure

Data input interface

Data output interface

Etherne Access

Results

Conclusions

- Same interface as the input except for an address and validate
- Validate derived from CRC checks
- Address word gives spin number and origin node number for the payload

Ethernet access

ntroductio

Node

Data input

Data outpur interface

Ethernet Access

Results

Conclusions

Pseudo-Scalable Pseudo-Ethernet Pseudo-Switch

(Short-tick FPGA targeted, 2-16 clients, UDP payload, one to many and many to one switch)

Status 2009-09-27: validated in hardware using simple test clients
Full-rate GigE in about 1k FPGA logic cells
No ARP vet

Results

Introduction

Structure

interface

Data outpu interface

Ethernet Access

Results

Conclusi

Architectural features

- Deterministic and synchronous (jitter-free)
- Low latency (no computers in real-time path)
- Fault tolerant
- Flexible
- Scalable

Prototype running on a laboratory scale

- Demonstrated fallback operation when a fiber optic cable is unplugged
- Demonstrated recovery to normal state when fiber is restored
- No human or computer intervention needed

Conclusions

Introduction

Structure

interface

Data outpu interface

Etherne Access

Results

Conclusions

 A common clock and commodity telecom parts make high speed, deterministic communications with an FPGA easy

• Fault tolerance takes serious effort

Acknowledgements

• Motivation and support from Bob Dalesio (BNL)

Thank you!

ありがとう